Hepatic and renal betaine-homocysteine methyltransferase activity in pigs as affected by dietary intakes of sulfur amino acids, choline, and betaine.
نویسندگان
چکیده
In Exp. 1, young pigs were fed a basal diet containing .17% methionine (Met) (.14% digestible Met), and .48% cystine (.38% digestible cystine) for 14 d (34 to 48 d of age). Treatment additions were .25% DL-Met, .34% betaine, .30% choline, or .25% DL-Met and .34% betaine. Methionine, but not betaine or choline supplementation, increased (P < .05) weight gain and feed efficiency. Hepatic betaine-homocysteine methyltransferase (BHMT) activity was increased (P < .05) by betaine and choline supplementation but was not affected by Met deficiency. Renal BHMT activity was increased (P < .05) by Met deficiency and was further increased (P < .05) by betaine supplementation. In Exp. 2, 10-kg pigs were fed the basal diet from Exp. 1 supplemented with enough DL-Met to bring the total basal Met to .24% (.20% digestible Met). Treatment additions consisted of .20% DL-Met or .34% betaine, and diets were fed for 16 d (34 to 50 d of age). Feed efficiency increased (P < .05) in response to Met, but not to betaine, supplementation. Hepatic BHMT activity increased (P < .05) in response to betaine and Met, but no changes in renal BHMT activity occurred. Although statistically significant changes in hepatic and renal BHMT activity occurred in both experiments, the magnitude of the responses was probably not physiologically important. Therefore, in contrast to previous findings with rats and chicks, it does not seem that hepatic and renal BHMT activity in pigs is influenced substantially by Met deficiency, or by surfeit levels of choline or betaine.
منابع مشابه
Homocysteine remethylation in young broilers fed varying levels of methionine, choline, and betaine.
Methionine is critical in amino acid nutrition for chickens, yet details of the flux of Met metabolites in the avian system are lacking. This study explored the interactions among dietary choline (CHO), betaine (BET), and sulfur amino acid levels on growth and hepatic homocysteine (HCY) remethylation. Graded levels (0, 0.07, 0.11, and 0.24%) of DL-Met were added to diets adequate in CHO and def...
متن کاملEffects of betaine supplementation on hepatic metabolism of sulfur-containing amino acids in mice.
BACKGROUND/AIMS We previously reported that acute betaine treatment induced significant changes in the hepatic glutathione and cysteine levels in mice and rats. The present study was aimed to determine the effects of dietary betaine on the metabolism of sulfur-containing amino acids. METHODS/RESULTS Male mice were supplemented with betaine (1%) in drinking water for up to 3 weeks. Changes in ...
متن کاملElevated tissue betaine contents in developing rats are due to dietary betaine, not to synthesis.
The time course of betaine accumulation and activities of enzymes involved in betaine metabolism were studied in developing rats. In study 1, pups weaned on a nonpurified diet had a transient increase in liver and kidney betaine content followed by a decline after approximately 42-56 d. In study 2, dams and, following weaning, pups were fed an AIN-93G (betaine-free) or an AIN-93G betaine-supple...
متن کاملHigh casein diet decreases plasma homocysteine concentration in rats.
Experiments were conducted to clarify the relationship between dietary protein level and plasma homocysteine concentration in rats. Male Wistar rats were fed diets differing in casein level from 5 to 50% for 14 d (Expt. 1). Plasma total homocysteine concentration was positively correlated with dietary casein level in the range of 5 to 10% but inversely correlated with dietary casein level in th...
متن کاملSuppression Effects of Betaine-Enriched Spinach on Hyperhomocysteinemia Induced by Guanidinoacetic Acid and Choline Deficiency in Rats
Betaine is an important natural component of rich food sources, especially spinach. Rats were fed diets with betaine or spinach powder at the same level of betaine for 10 days to investigate the dose-dependent effects of spinach powder supplementation on hyperhomocysteinemia induced by guanidinoacetic acid (GAA) addition and choline deprivation. The GAA-induced hyperhomocysteinemia in rats fed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of animal science
دوره 76 2 شماره
صفحات -
تاریخ انتشار 1998